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Physics of Interest 

•  Rare decay/process – searches for physics beyond Standard Model  
− µ+         e+γ,  µ- N         e-N  

•  Search for muon and electron number violation in charged sector 
•  Sensitive to many extensions to the Standard Model – supersymmetry, multiple Higgs doublets, ETC, 

horizontal gauge bosons, lepto-quarks 
− KL        π0νν, K+       π+νν	



•  Also a search for new physics – e.g. SUSY loop contributions to FCNC decay amplitudes 

•  High precision measurements 
− g-2 of the muon  

•  Small corrections to anomalous magnetic moment of muon in diagrams with loops containing new 
particles 

•  Sensitive to similar new physics contributions as CLFV experiments, but without flavor violation, e.g. 
supersymmetry 

•  Concentrate on charged lepton flavor violation experiments 
− µ+         e+γ  

•  ongoing experiment [MEG] 
•  limited by detector performance 
•  examples of detector choices  

− µ- N         e-N  
•  being actively developed at both Fermilab [mu2e] and JPARC [COMET] 
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Detector Choices Correlated with Beam Properties 

•  Experiments use very intense beams, often with particular time structure 
− Very low energy muon beams for µ+         e+γ 

•  Uses positive beam, can exploit decays of pions at rest – surface muon beam of 29 MeV/c 
•  DC beam to reduce instantaneous rates 

− Negative muon beam with very high intensity for muon conversion  
•  Large µ/p ratio needed 
•  For reasons of background suppression, beam pulsed at ~ 1 MHz  

•  Beam contamination by electrons and muons is a source of backgrounds with which 
detectors must deal 
− Primarily detector rate issue for µ+         e+γ	


− Both physics background and detector rate issue for µ- N         e-N 
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Demands on Detector Systems 

•  What precision is needed in measured quantities? 
− Low level quantities (time, charge, pulse shape in individual detectors) 
− High level quantities (particle time, momentum, position…) 
− Typically driven by issues of background rejection 
− Often tension between measurement precision and detector material (multiple scattering, 

energy loss in detectors)   

•  At what rates must detector elements operate? 
− Driven by acceptances, desired sensitivity, background/signal  
− May be limiting factor in experimental sensitivity 
− Some of highest detector rates in operating experiments have been in intensity frontier 

experiments (e.g. KL      µe) 

•  At what rates must information be digitized, recorded in static memory? 
− Hardware selection: reduce digitization rate, perhaps loss of efficiency 
− Digitize more, higher digital data bandwidth, perhaps increased flexibility 
− Where is data processing and selection done 

•  Non-programmable hardware 
•  Programmable hardware (FPGA, PLU)  
•  Conventional computers 
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Principal Features of µ＋ → e＋γ Experiment 

•  Stop µ＋  in thin target"
•  Measure energies of e＋ (Ee) and γ (Eγ) 

•  Measure angle between e＋ and γ (Δθ) 
•  Measure time between e＋ and γ (Δt) "

•  Main source of background: 
•  Accidental coincidences of  

 e＋ from Michel decay (µ＋→e＋νeνµ 
 random γ  from rad. decay or annihilation in flight 

•  Eγ    distribution rises ~linearly from endpoint 
•  Ee   distribution peaks at ( x = Ee/Emax =1) 

   ⇒ 	

background/signal ∝ ΔEe  × (ΔEγ)2 × Δt × (Δθ)2 × Rate 
        signal sensitivity    ∝ acceptance × Rate 

•  Must minimize resolution in all measured quantities,  
      maximize acceptance 

•  Tails in angle, time, positron energy resolution primarily  
represent loss of acceptance, tails in photon energy  
resolution affects background 

 Ee = 52.8 MeV 

Kinematics 
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Previous Experience and MEG Goal 

Exp./Lab Year σRMS  Resolutions  Stop rate  
[MHz] 

Duty cycle 
[%] 

BR 
(90% CL) Ee [%] Eγ [%]  Δteg[ps] Δθeg[mrad] 

MEG prop. 2002 0.38 1.7 64 8 30 100 1 x 10-13 

• Two primary ways of measuring photon energy: 
– Calorimetric (Crystal Box, MEG) 

• Limited by resolution of calorimeter 
• Large solid angle  
• Possibly poor photon direction  

measurement 
– Pair produce, measure e+e- energy 

(MEGA) 
• Low acceptance due to  

thin convertor to reduce  
energy loss – high rates 

• Very good resolution possible  

6 
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MEG Detection Technique 

• Original LOI from 1998 (PSI-RR-99-05), proposal in 2002 with goal 10-13 
• Muon stop rate of ~3x107 (much lower instantaneous rate than MEGA) 

• Detect photon calorimetrically with  
liquid xenon scintillation calorimeter  

– Energy resolution 1-2% 
– Timing resolution  <60 ps 
– Position resolution ~ 5 mm  
– Modest solid angle of ~10% (cost) 

• Measure positron momentum with  
magnetic spectrometer,  
time with plastic scintillator detector 

– Momentum resolution ~ 0.4% 
– Angle resolution ~ 9 mrad 
– Time resolution ~ 50 ps 
– Acceptance matched to calorimeter 

• Significant detector development went into the experiment  



Magnetic Spectrometer Design 

• r 
• z 

•  16 drift chambers, each 2 layers, 9 cells per 
layer  

•  Operated with He-C2H6 in He atmosphere to 
reduce multiple scattering 

•  Gas containing foils also serve as cathode 
pads 
− Requires δP across foils to < 0.1Pa 

•  Radial position from drift time  
•  Resistive wires for approximate Z by charge 

division, pattern etched on cathode pads to 
interpolate Z 

•  Calculated chamber-to-chamber scattering 
error equivalent to 300 µm 

•  Goal: σR = 200 µm   σZ = 300 µm 
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Liquid Xenon Calorimeter 

• Liq. Xe 

• H.V. 

• Vacuum 
• for thermal insulation 

• Al Honeycomb 
• window 

• PMT 

• Refrigerator 
• Cooling pipe 

• Signals 

• filler • Plastic 
• 1.5m 

Density 2.95 g/cm3 

Boiling and melting points 165 K, 161 K 

Energy per scintillation photon 24 eV 

Radiation length 2.77 cm 

Decay time 4.2, 22, 45 ns 

Scintillation light wave length 175 nm 

Scintillation light absorption length > 100 cm 

Attenuation length (Rayleigh scattering) 30 cm 

Refractive index 1.74 

•  Relatively high light yield  
•  No self-absorption of scintillation light: 

attenuation only from impurities 
•  ~1000 l liquid xenon (largest LXE volume) 
•  860 mesh phototubes on surface, in LXE 
•  Thin window to reduce photon conversions 
•  Goal is to measure photon properties: 
− Position:  σRMS = 5 mm 
− Time:     σRMS = 50 ps  
− Energy:  σRMS = 1.2 MeV at 52 MeV 
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Timing Counter Design 

• Primary purpose is trigger and precise 
measurement of positron time 

•  2 layers: 15 constant-φ bars, 128 
constant-z fibers at each end 

• Bars used for timing, R-φ position, 
approximate Z position 

– ~4x4 cm2, 60 cm long  
– phototube readout with waveform digitizers 

• Fibers used for precise z coordinate 
– 5x5 mm2, cover ~ π/3 in φ,	


– APD readout with waveform digitization 

• Goal: σt = 40 ps  	


• Correct time for track path to < 1 cm 
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Readout Electronics 

• All channels recorded in waveform digitizers (~3500 channels) 
• Custom built sampling chip (Domino Ring Sampling) 

– 2.5 GHz sampling rate  
(operated at 500-700 MHz for drift chambers) 

– Sampling depth 1024 bins  
– < 40 ps timing jitter 
– 10 bit FADC (33 MHz, multiplexed 8:1)  
– Onboard calibration 
– Multiple versions, now using DRS4:  

internal time and charge calibration,  
improved temperature performance 

• Shift Register 

• IN 

• Out 

• Waveform  
• stored 

• FADC  
• 33 MHz 

• Clock 
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Current MEG Detector Performance 

•  MEG at PSI is currently collecting and analyzing data 
− MEG resolutions (σRMS) 

 Quantity  Proposal  Current 
•  Ee   0.35  ~0.7  %  
•  Eγ   	

1.7  ~2.8  %  
•  Δ 	

θeγ   	

4-5  ~12  mrad 
•  Δteγ      65  ~160  ps 

− Expected (proposal) background ~5x10-14 at stop rate 3x107 

Currently worse by factor  

(0.7/0.35) x (2.8/1.7)2 x (14/8)2 x (160/65)  = 100 

− Expected background near 5 x 10-12   

− Preliminary results from 2009 data 
B(µ＋ → e＋γ ) <1.45 x 10-11 

− Significant improvements in performance 
needed to reach goal  
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•  Muons stop in matter and form a muonic atom. 
•  They cascade down to the 1S state in less than 10-16  s. 
•  They coherently interact with a nucleus (leaving the nucleus in its ground state) 

and convert to an electron, without emitting neutrinos  ⇒  Ee = Mµ  - ENR ‒ EB. 

•  Experimental signature is an electron with Ee=105.1 MeV emerging from stopping 
target, with no incoming particle near in time. 

•  More often, they are captured on the nucleus: µ-(N,Z)→νµ(N,Z-1)    
              or decay in the Coulomb bound orbit: µ-(N,Z)→νµ(N,Z)νe 
                   (τµ  = 2.2 µs in vacuum, ~0.9 µs in Al) 

•  Rate is normalized to the kinematically similar weak capture process: 

Goal of new experiment is to detect µ-N→e-N if Rµe is at least 2 X 10-17  
with one event providing compelling evidence of a discovery. 

Coherent Conversion of Muon to Electrons (µ-N→e-N) – mu2e, COMET 

Rµe ≡  
Γ(µ-N→e-N)	



Γ(µ-N→νµN(Z-1)) 
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Muon Conversion Apparatus 

Straw Tracker 

Crystal 
Calorimeter 

Muon Stopping 
Target 

Muon Beam 
Stop 

Superconducting 
Production Solenoid          

(5.0 T – 2.5 T) 

Superconducting 
Detector Solenoid     

(2.0 T – 1.0 T) 

Superconducting 
Transport Solenoid              

(2.5 T – 2.1 T) 

Collimators 



Detector Challenges for Muon Conversion Experiment 
•  Detector single channel rates and dynamic range – few x 105 Hz during signal period 
− Flash shortly after pulsed beam strikes production target – electrons  
− Protons (highly ionizing), photons, neutrons from nuclear de-excitation following muon capture 
− Tail of decays of muons in Coulomb bound orbit 
− Use geometry of detectors to mitigate problem 

•  Physics background rejection 
− Signal is isolated 105 MeV electron consistent with originating 

 in muon stopping target 
− Background from variety of sources 

•  High energy tail of muon decay in orbit electron spectrum 
•  Electrons from beam sources – muon and pion radiative capture 
•  Cosmic ray induced backgrounds 

− Detectors to reduce backgrounds 
•  High precision tracking spectrometer – scattering and energy loss straggling limited – 180 keV resolution 
•  Sufficient redundancy to reduce high energy tails in momentum resolution to acceptable level 
•  Calorimetric detector to provide confirmation of energy, time, position of spectrometer trajectory 

•  Operating environment 
− Detectors in vacuum – not easily accessible, issues of cooling, breakdown of HV 
− Detectors must operate both in vacuum and at ambient pressure during development 
− Detectors are in high magnetic field, space is expensive 

•  Data rates   
− Few x 104 detector channels operating at few x 105 Hz 
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Example of Rate Environment [MECO] 
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•  Very high rate from beam electrons at short times – potential problems with chamber operation 
•  Protons from µ capture are very heavily ionizing – potential problems with noise, crosstalk 

Full time between proton pulses Detection time interval 



•  Tracker requirements from rate, resolution 
− Resolution dominated by energy loss and scattering  
− Rate is dominated by muon capture secondaries and by decay in orbit [DIO] 
− Central resolution function affects dominant background from DIO proportional to σE

6 
− Tails in resolution function could result in increased background  

•  Two rather different geometries possible 
− Axial straw elements – good geometry,  

measurement points concentrated, few straws 
• ~2500 straws – rφ resolution 200 µm 
•  8 vane and octant modules, 3 layers per module 
•  17000 cathode pads for axial coordinate (1.5 mm σ) 
• Space point by correlating anode and cathode 
• Manifolds, wire support in active area 
•  Long straws (~2.6 m) – intermediate wire supports 

− Transverse straw elements – no support or  
readout material in active region, short straws 
•  22000 straws 
•  18 stations x 2 planes x  6 panels  

with hexagonal geometry 
• Double layer per panel for L/R resolution  
• Space point from stereo reconstruction  

aided by anode time division for position along wire 

Tracker R&D for µ    e Conversion 
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Axial Geometry Tracker R&D Challenges 
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•  Mechanical 
− Maintain wire position within straw to ~100 µm  

•  2 intermediate spiral wire supports – reduce mass, volume for acceptance  
− Support structure in space 

•  Link modules to maintain geometry 
•  Provide axial tension at ends – gas pressure exceeds wire tension when operating 
•  Minimize support material – react gravity, axial tension to external frame with carbon fiber in tension 

− Gas tight construction, 6000 m, 4800 connections to manifold with 150 per module end 
− Support of cathode foils 
− Allowing for foil stretching under tension – allow one end to float axially? 

•  Straw materials 
− Resistive material for outer straw layers 
− Axial voltage drop in straw due to cathode current  

•  Readout   
− 2400 vacuum electrical feed-throughs, module to solenoid volume 
− Low-mass strip-line cable for anodes and cathodes – in active volume 
− Decouple HV in manifold or at preamp location outside active region? 
− Method to isolate broken wire – fused (ATLAS) 
− Preamp in manifold or outside active region?  
− 19000 vacuum electrical feed-throughs if digitizing outside detector solenoid vacuum 

•  Analysis 
− Pattern recognition and fitting robust: cathode-anode correlation (charge, time, tracking) 



Transverse Geometry Tracker R&D Challenges 
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•  Mechanical 
− Maintain straightness of single, unsupported straw to ~100 µm 
− Allowing for foil stretching under tension  
− Tension straws to allow operation at 0, 105 Pa gauge pressure (thin straws) 
− Gas tight construction, 18000 meters, 44000 connections to manifold with 100 per module end   

•  Straw materials 
− Use of thinner straws desirable – central part of position resolution function limiting with 25 µm 

straws – recall background proportional to σE
6 

•  Readout   
− 44000 vacuum electrical feed-throughs, module to solenoid volume (or digitize in manifold) 
− Method to decouple broken wire – fused 
− 44000 vacuum electrical feed-throughs if digitizing outside detector solenoid vacuum 
− Time difference on anode wire ends – sub-ns resolution in time difference to be useful 

•  Analysis 
− Non-local position information (helped by time division) 
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Straw Material  
•  Conducting with aluminum or copper on substrate 
− Polyester (mylar) non-conducting, spiral wound     
− Polyimide (kapton) non-conducting, spiral wound 

•  Straw material – resistive 
− Spiral wound carbon loaded polyimide  

•  Double wrap with one 25 µm carbon loaded layer, one thinner  
layer without carbon  

•  Possibility of thinner carbon loaded material  
•  Problems with variations in resistivity batch to batch 

− PEEK(PolyEther-Ether-Ketone) (30 µm) 
•  Good mechanical strength and radiation tolerance 
•  Thermoplastic extrusion -> potential to make long tube 
•  Proprietary process of forming seamless tubes on a mandrel 

•  Maintaining straightness 
− Axial tension  
− Support with close-packed arrays  

•  Expansion under gas pressure (105 Pa) 
− Can linear or 2 dimensional arrays be close packed and glued or is space needed for 

expansion under gas pressure? 

•  Creep under long-term tension  

Adding tension reduces sag of Mu2e triplet w ith 2 intermediate supports
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Recent Tests of Close-Packed Array Mechanical Properties 

•  Early work on long straws [MECO, Houston] 
•  Recent measurements done at Fermilab [Krider et al.] 
•  Gluing straws in close packed array significantly reduces 

deflection under gravity 
•  Tests done without gas pressure, with three layer, close-

packed and glued array 
•  Axial tension further reduces deflection – comparable to 

tension from gas pressure 
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• 150 gm/straw 

• untensioned 
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Cathode Pad Resolution with Resistive Straws (Osaka University) 

• 6.0 MΩ/square 
• 0.7 MΩ/square 

• No conductor 

• 2 mm • Half cylinder 

•  Required resolution in Z ~1500 µm 
•  PEEK seamless and carbon loaded kapton spiral 

wound straws tested 
•  Measured resolution exceed requirements –  

300 to 600 µm depending on resistivity 
•  Tests also done with aluminum conducting trace 

for cathode current 
•  Conducting strip reduces induced charge, 

sharpens distribution across pads 



Reducing Straw Mass 

•  Yield strength of kapton(mylar) limited by hoop force and 105 Pa to ~15(6) µm 
•  Metalization: copper inside (cathode), aluminum outside (diffusion) to reduce mass 
•  Reduces radiation lengths a factor of 3 with respect to 25 µm 
•  Issues with metalization of very thin material  
•  Probably want to operate with zero overpressure for tests – straws must not  collapse  

under gravity 
•  Not yet demonstrated that very thin material can be wound into straws 
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Calorimetric Measurement of Electron  

•  Confirmation that electron trajectory has  
associated energy deposition  
in time and in spatial coincidence 

•  Used as an event selection tool before  
events recorded to non-volatile memory 

•  Significant ambient background – premium on fast scintillator  
•  Geometry peculiar to experiment – electrons 

in helical trajectory with pitch angle of 55o 
− Good position and energy resolution when electrons incident  

on face opposite photo-detectors 
− Premium on high density – minimize areas of front and inner face 

•  Material choices 
− PbW04 – fast, shortest radiation length, relatively low light yield 
− BGO – high light yield, slow, relatively high density 
− LSO, LYSO – high light yield, relatively fast, expensive 

•  Detector rates from target and muon  
beam dump 
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Crystal / APD Test Arrangement 

Light Yield for PbWO4 [MECO] 

•  3 × 3 × 14 cm3 PbWO4 crystals 

•  Large area (13mm x 13mm) APD from RMD Inc. 

•  Hamamatsu (5mm x 5mm) APD used by CMS 

•  Crystal / APD combinations were tested using cosmic 
rays. The crystals and APDs are cooled. 

•  Photo-electron yield estimated at 27 pe/MeV per APD 
when cooled to -24 C 

•  Newer PbWO4 with larger light yield 



Studies of PBWO4 Performance from Prototype and Simulation 
•  Signal is 105 MeV  electron 
− Range from dE/dx is few cm in dense crystals 
− Can get significant energy loss from albedo and leakage for 

electrons near edge of calorimeter – low energy tails – GEANT4 
studies of LSO crystals [mu2e INFN Frascati]  

•  Significant R&D done on contributions to energy resolution 
from all sources [MECO NYU] 
− Photo-statistics using cosmic ray tests 
− Electronics noise using prototype preamps and shapers 
− Pileup from simulation 
− Energy deposition from GEANT – leakage, albedo 
− Total resolution with 2 large area APDS ~5% 
− Acceptance losses for detected energy >80 MeV dominated by 

electrons striking upstream  
and inner faces  

− Trigger rates rather low  
(<1 kHz) for thresholds near  
75 MeV 

•  Might benefit from improved  
photo-statistics, no cooling if  
if LYSO could be used,  but  
tradeoffs in cost, density 
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Data Requirements  

•  Want time and at least some charge information on all channels 
− Time resolution to ~ 1-2 ns in tracking chamber for position resolution 

•  Somewhat better time resolution (few 100 psec) for time division in transverse geometry  
− Similar resolution in calorimeter:  

•  Correlate track in spectrometer and signal in calorimeter 
•  Distinguish forward and backward going tracks 

− Charge information in tracker: modest resolution needed 
•  Correlate cathode and anode signals, interpolate Z coordinate from pad charges in axial tracker 
•  Distinguish between signals from electrons and heavily ionizing protons or spiraling photon conversions 

− Charge information in calorimeter 
•  Resolution down to few percent 

•  Channel count dominated by tracker  
− Axial geometry ~2400 anodes, 17000 cathodes 
− Transverse geometry ~ 22000 wires, double ended readout 
− Additional few thousand channels from calorimeter and cosmic ray veto system 

•  Typical rates ~300 kHz per channel 
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Trigger and DAQ 
•  What information to store for a hit? 
− Time and limited charge information for all hits  

•  Reduces bytes of information per hit, continuous digitization and storage of all hits possible 
•  Limits flexibility in signal processing, e.g. technique for hit time determination, integration times for charge 
•  Provides increased flexibility in event selection, allows use of high level processors 

− Voltage waveform around the region of interest for selected events 
•  Provides for flexible signal processing, can optimize sampling rate for each detector (very useful in MEG) 
•  Provides most possible information about hits (e.g. pileup at high rates) 
•  Probably cannot continuously sample all waveforms – event selection prior to digitization required 

•  How to select events? 
− Digitize all information – select events after loading into massively parallel computing farm 

•  120 Gbytes/sec to processor farm – possible with fiber transmission 
−   Store information in analog form long enough to select events, then digitize waveform 

•  Select events using pipelined signals from fast waveform digitizers (e.g. on calorimeter signals) 
•  Minimal deadtime if trigger and readout latency is of order 1 µsec  

•  Where to digitize: inside or outside vacuum? 
− Outside 

•  Analog signals accessible, minimize space and power constraints on digitizers 
•  Large number of (20-50k) analog signal cables through vacuum wall  
•  Concern about crosstalk, noise on analog cables 

−  Inside  
•  Increased amount and complexity of electronics not easily accessible – more concern about failure rate 
•  Much reduced vacuum signal penetrations through vacuum wall 
•  Concern about inducing noise on detectors (e.g. straws) from very high frequency digital signals  
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Trigger/DAQ with Full Digitized Data Buffer (Streaming Architecture) 

•  LHCb is close to fully streaming 
− Some L0 trigger  

•  Study of fully streaming architecture  
[mu2e Fermilab, Berkeley] 

•  Expect improvements in switches, processing power 
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Digitization for Fully Streaming DAQ 
•  Data rates for continuous waveform digitazation at required frequency prohibitive 
•  Digitizers similar to BaBar ELEFANT and JDEM design being studied [MECO Houston, 

LBNL; mu2e Berkeley, LBNL] 

•  Additional work on possibility of implementing TDC in FPGAs [mu2e, Fermilab] 
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Example Trigger/DAQ with Analog Signal Buffer [MEG] 
•  Trigger in cascaded FPGAs 

using waveforms digitized in 
FADCs; latency < 1 µsec 

•  Analog signals held in ring 
buffer of capacitors sampling 
at 0.5-2.5 GHz – fully covers 
requirement for mu2e 

•  Data digitization at 33 MHZ by 
sequentially shifting analog 
signals to digitizer, multiplexed 
8:1– too slow for mu2e 

•  Modification for higher speed 
ADCs (100 MHz), not 
multiplexed 
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•  33 MHz FADC  • Shift Register 

• In 

•  Out 

• 16 
•  4 

• 14 boards 
• 14 x 48 • Type1 

• Type1 
• Type1 

• 16 
•  4 

• 2 
board
s 

• 5+5+2 boards 
• 9 x 48 • Type1 

• Type1 
• Type1 

• 1 
board 

• 1 
board 

• 1 
board 

• 2 
x48 

• Type2 • Type2 

• Type2 

• Type2 

• 9 boards 
• 9 x 48 • Type1 

• Type1 
• Type1 

• 16 
•  4 

• 4 boards 
• 2 x 48 • Type1 

• Type1 

• 2 
x48 

• 1 
x48 

• 4 x 48 

• LXe front 
face 

• LXe lateral 
faces 

• Timing 
counters 

• Type2 

• Drift 
chambers 

• Type2 

DRS + 
multiplexed 33 
MHz FADC 
used by MEG 



Summary 

•  Experiments will benefit enormously from increased intensities 
•  Detector advances critical to realize these improvements 
− Ability to use the increased intensity 
−  Improved performance necessary to reduce backgrounds commensurate with improved 

sensitivity that can be achieved 
•  The job isn’t over when the detector development is done 
−  Implementation is likely to be difficult 
− Reality strikes when data is being recorded and analyzed 

•  In the case at hand, options exist for critical detector components  
− Tracker has multiple geometries in straw chamber implementations 

•  Difficult problems in each case 
•  Some difficulties can be confronted early, some may be confronted only during commissioning and use 
•  Even considerations of a conventional drift chamber [mu2e INFN Lecce] that I did not describe 

− Calorimeter is probably easier in some sense 
•  Tradeoffs among different crystals in cost, operational complexity, performance  

− Trigger and DAQ has structural choices  
•  Fully streaming vs. analog buffering with short time scale event selection 
•  Location of digitizing electronics  

•  Experiment would benefit from resources to carry R&D farther forward  
on a number of these issues 
− Largely an issue of financial resources and people  
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